Matrix Rank in Communication Complexity

نویسنده

  • Mohan Yang
چکیده

This lecture focuses on proving communication lower bounds using matrix rank. Similar to fooling sets and rectangle size bounds, the matrix rank technique also gives a lower bound on the number of monochromatic rectangles in any partition of X × Y but it does so in an algebraic way[1]. This makes algebraic tools available for proving communication lower bounds. We begin by solving the problem about matrix rank from last lecture. We then present the rank technique and reprove tight lower bounds on the communication complexity of equality, greater-than, disjointness, and inner product. Finally, we look into the comparative strength of fooling sets, rectangle size bounds, and matrix rank as techniques for proving communication lower bounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonnegative Rank vs. Binary Rank

Motivated by (and using tools from) communication complexity, we investigate the relationship between the following two ranks of a 0-1 matrix: its nonnegative rank and its binary rank (the log of the latter being the unambiguous nondeterministic communication complexity). We prove that for partial 0-1 matrices, there can be an exponential separation. For total 0-1 matrices, we show that if the ...

متن کامل

The Corruption Bound, Log Rank, and Communication Complexity

We prove that for every sign matrix A there is a deterministic communication protocol that uses O(corr1/4(A) log 2 rank(A)) bits of communication, where corr1/4(A) is the corruption/rectangle bound with error 1/4. This bound generalizes several of the known upper bounds on deterministic communication complexity, involving nondeterministic complexity, randomized complexity, information complexit...

متن کامل

Still Another Rank Determination of Set Intersection Matrices with an Application in Communication Complexity

The set-intersection function gives the cardinality of the intersection of two sets. In order to obtain a lower bound for the communication complexity of this function, the rank of the corresponding characteristic function-value matrices was calculated in 4] and 5]. In this note, the rank of these matrices is determined by another method of proof, which makes use of a factorization into a produ...

متن کامل

En Route to the Log-Rank Conjecture: New Reductions and Equivalent Formulations

We prove that several measures in communication complexity are equivalent, up to polynomial factors in the logarithm of the rank of the associated matrix: deterministic communication complexity, randomized communication complexity, information cost and zero-communication cost. This shows that in order to prove the log-rank conjecture, it suffices to show that low-rank matrices have efficient pr...

متن کامل

Nondeterministic Quantum Communication Complexity: the Cyclic Equality Game and Iterated Matrix Multiplication

We study nondeterministic multiparty quantum communication with a quantum generalization of broadcasts. We show that, with number-in-hand classical inputs, the communication complexity of a Boolean function in this communication model equals the logarithm of the support rank of the corresponding tensor, whereas the approximation complexity in this model equals the logarithm of the border suppor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012